Structural modification of humic acids in a barrier discharge plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of the initiation of chemical transformations of humic acids (HA) in a barrier discharge plasma. The HA were treated with ammonia vapor in the presence of various gaseous media like ethylene, air, oxygen, carbon dioxide, and mixtures of argon. The method of EPR spectroscopy has revealed a decrease in the number of paramagnetic centers after treatment of HA in a barrier discharge. This suggests the recombination of free radicals in their structure. As revealed by IR spectroscopy, the intensity of the band at 1383 cm–1 corresponding to the NO3 group increased when HA were exposed to discharge plasma in air. When HA were treated with ammonia vapor in an argon atmosphere, ammonium humate was formed, which is completely soluble in water.

Full Text

Restricted Access

About the authors

N. V. Yudina

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: natal@ipc.tsc.ru
Russian Federation, Tomsk

A. Yu. Ryabov

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: a.y.ryabov@yandex.ru
Russian Federation, Tomsk

S. V. Kudryashov

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: ks@ipc.tsc.ru
Russian Federation, Tomsk

S. I. Zherebtsov

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch of the Russian Academy of Sciences, Institute of Coal SB RAS

Email: sizh@yandex.ru
Russian Federation, Kemerovo

K. S. Votolin

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch of the Russian Academy of Sciences, Institute of Coal SB RAS

Email: kostvot@mail.ru
Russian Federation, Kemerovo

K. M. Shpakodrayev

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch of the Russian Academy of Sciences, Institute of Coal SB RAS

Email: shpakodraevkm@mail.ru
Russian Federation, Kemerovo

N. V. Malyshenko

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch of the Russian Academy of Sciences, Institute of Coal SB RAS

Email: profkemsc@yandex.ru
Russian Federation, Kemerovo

References

  1. Hur J., Lee B.-M., Shin K.-H. // Chemosphere. 2014. V. 111. P. 450–457. https://doi.org/10.1016/j.chemosphere.2014.04.018.
  2. Zhao J., Wang Z., Ghosh S., Xing B. // Environmental Pollution. 2014. V. 184. P. 145–153. https://doi.org/10.1016/j.envpol.2013.08.028.
  3. Юдина Н.В., Савельева А.В., Линкевич Е.В. // ХТТ. 2022. № 4. С. 20–25. https://doi.org/10.3103/s0361521922040097.
  4. Dobbs L.B., Canellas L.P., Olivares F.L. at al. // Journal of Agricultural and Food Chemistry. 2010. V. 58. № 6. P. 3681–3688. https://doi.org/10.1021/f904385.
  5. Zherebtsov S.I., Ismagilov Z.R. // Solid Fuel Chemistry. 2012. V. 46. № 6. Р. 339–351.
  6. Malyshenko N.V., Zherebtsov S.I., Smotrina O.V., Bryukhovetskaya L.V., Ismagilov Z.R. // Chemistry for Sustainable Development. 2015. V. 23. № 4. P. 451–457. [Химия в интересах устойчивого развития. 2015. Т. 23. № 4. С. 461–457. https://doi.org/10.15372/KhUR20150415].
  7. Филиппова О.И., Куликова Н.А., Бычкова Я.С., Воликов А.Б., Перминова И.В. // Проблемы агрохимии и экологии. 2015. № 1. С. 42–47.
  8. Skripkina T.S., Bychkov A.L., Tikhova V.D., Smolyakov B.S., Lomovsky O.I. // Environmental Technology & Innovation. 2018. V. 11. Р. 74–82.
  9. Юдина Н.В., Савельева А.В., Линкевич Е.В. // ХТТ. 2019. № 1. С. 34–40. https://doi.org/10.1134/S0023117719010092. [Solid Fuel Chemistry. 2019. V. 53. № 1. Р. 29–35].
  10. Sanito R.C., You S.-J., Wang Y.-F. // J. Hazardous Materials. 2022. V. 424. Р. 127390. https://doi.org/10.1016/j.jhazmat.2021.127390.
  11. Mumtaz S., Khan R., Rana J.N., Javed R., Iqbal M., Choi E.H., Han I. // Catalysts. 2023. V. 13. №. 4. Р. 685. https://doi.org/10.3390/catal13040685.
  12. Zabidi N.Z.A. // J. Phys.: Conf. Ser. 2021. V. 2071. P. 012004. https://doi.org/10.1088/1742-6596/2071/1/012004.
  13. Li S., Dang X., Yu X., Abbas G., Zhang Q., Li C. // Chemical Engineering Journal. 2020. V. 388. Р. 124275. https://doi.org/10.1016/j.cej.2020.124275.
  14. Zhou R., Zhou R., Wang P. Xian Y., Mai-Prochnow A., Lu X.P., Bazaka K. // J. Phys. D: Appl. Phys. 2020. V. 53. Р.303001. https://doi.org/10.1088/1361-6463/ab81cf.
  15. Zeghioud H., Nguyen-Tri P., Khezami L., Amrane A., Assadi A. A. // J. Water Process Eng. 2020. V. 38. Р. 101664. https://doi.org/10.1016/j.jwpe.2020.101664.
  16. Feng J., Sun X., Li Z., Hao X., Fan M., Ning P., Li K.// Adv. Sci. 2022. V. 9. Р. 2203221. https://doi.org/10.1002/advs.202203221.
  17. Jezierski A., Czechowski F., Jerzykiewicz M., Chen Y., Drozd J. // Spectrochimicaacta. Part A 56. 2000. P. 379–385.
  18. Ishiwatari R. // Geochemical J. 1974. V. 8. P. 97–102.
  19. Наканиси К. Инфракрасные спектры и строение органических соединений. Пер. с англ. М.: Мир, 1965. 216 с.
  20. Никамото К. Инфракрасные спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 535 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra: 1 – untreated GC; 2 – GC after barrier discharge in the presence of a mixture of argon with ammonia vapor.

Download (265KB)
3. Fig. 2. IR spectra: 1 – untreated GC; 2 – GC after barrier discharge in the presence of air.

Download (242KB)

Copyright (c) 2025 Russian Academy of Sciences