Resonance Enhancement of the Faraday Effect in a agnetoplasmonic Composite

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of a theoretical and experimental study of the enhancement of the magneto-optical Faraday effect in a magnetoplasmonic nanocomposite, caused by localized plasmon resonance (LPR) in metal nanoparticles. The nanocomposite comprises a three-layer structure of self-assembled gold nanoparticles in a bismuth-substituted iron-garnet matrix. It is shown theoretically and experimentally that the enhancement of the magneto-optical Faraday effect is determined by the action of a magnetic field on the magnetoplasmonic composite as an effective medium as a whole. In this case, in the magnetoplasmonic nanocomposite, the Faraday effect is enhanced at the LPR wavelengths and is slightly weakened in the region of short wavelengths relative to the LPR. It is theoretically shown that the complex gyration index in the off-diagonal terms of the effective permittivity tensor for the magnetoplasmonic composite, in addition to rotation of the polarization plane, leads to the appearance of alternating ellipticity in the vicinity of the plasmon resonance, which is observed in the form of asymmetry of magneto-optical rotation.

作者简介

S. Tomilin

Vernadsky Crimean Federal University

编辑信件的主要联系方式.
Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

A. Karavaynikov

Vernadsky Crimean Federal University

Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

S. Lyashko

Vernadsky Crimean Federal University

Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

E. Milyukova

Vernadsky Crimean Federal University

Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

O. Tomilina

Vernadsky Crimean Federal University

Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

V. Berzhansky

Vernadsky Crimean Federal University

Email: tomilin_znu@mail.ru
俄罗斯联邦, Simferopol, Republic of Crimea, 295006

参考

  1. Sharkawy A., Shi Sh., Prather D.W. Heterostructure photonic crystals: theory and applications // Appl. Opt., 2002. V. 41. P. 7245–7253.
  2. Uchida K., Adachi H., Kikuchi D., Ito S., Qiu Z., Maekawa S., Saitoh E. Generation of spin currents by surface plasmon resonance // Nature Communications. 2014. V. 6. P. 5910.
  3. Ignatyeva D.O., Knyazev G.A., Kapralov P.O., Dietler G., Sekatskii S.K., Belotelov V.I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications // Scientific Reports. 2016. V. 6. P. 28077.
  4. Kharratian S., Urey H., Onbaşlı M.C. RGB Magnetophotonic Crystals for High-contrast Magnetooptical Spatial Light Modulators // Sci. Rep. 2019. V. 9. P. 644.
  5. Soldano L.B., Pennings E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications // J. Lightwave Technol. 1995. V. 13 (4). P. 615.
  6. Baryshev A.V., Uchida H., Inoue M. Peculiarities of plasmon-modified magneto-optical response of gold–garnet structures // J. Opt. Soc. Am. B. 2013. V. 30(9). P. 2371.
  7. Uchida H., Masuda Y., Fujikawa R., Baryshev A.V., Inoue M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi: YIG film // J. Magn. and Magn. Mat. 2009. V. 321. P 843.
  8. Fujikawa R., Baryshev A.V., Kim J., Uchida H., Inoue M. Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure // J. App. Phys. 2008. V. 103. P. 07D301.
  9. Tkachuk S., Lang G., Krafft C., Rabin O., Mayergoyz I. Plasmon resonance enhancement of Faraday rotation in thin garnet films // J. App. Phys. 2011. V. 109. P. 07B717.
  10. Zhu H., Gao M., Pang C., Li R., Chu L., Ren F., Qin W., Chen F. Strong Faraday Rotation Based on Localized Surface Plasmon Enhancement of Embedded Metallic Nanoparticles in Glass // Small Sci. 2022. V. 2. P. 2100094.
  11. Chin J.Y., Steinle T., Wehlus T., Dregely D., Weiss T., Belotelov V.I., Stritzker B., Giessen H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation // Nature Commun. 2013. V. 4. P. 1599.
  12. Belotelov V.I., Doskolovich L.L., Kotov V.A., Bezus E.A., Bykov D.A., Zvezdin A.K. Faraday effect enhancement in metal-dielectric plasmonic systems // Proc. of SPIE. 2007. V. 6581. P. 65810S.
  13. Krichevsky D.M., Kalish A.N., Kozhaev M.A., Sylgacheva D.A., Kuzmichev A.N., Dagesyan S.A., Achanta V.G., Popova E., Keller N., Belotelov V.I. Enhanced magneto-optical Faraday effect in two-dimensional magnetoplasmonic structures caused by orthogonal plasmonic oscillations // Phys. Rev. B. 2020. V. 102. P. 144408.
  14. Bremer J., Vaicikauskas V., Hansteen F., Hunderi O. Influence of surface plasmons on the Faraday effect in bismuth-substituted yttrium iron garnet films // J. App. Phys. 2001. V. 8 (11). P. 6177.
  15. Mikhailova T.V., Lyashko S.D., Tomilin S.V., Shaposhnikov A.N., Karavainikov A.V., Berzhansky V.N. Hybrid states of Тamm plasmon polaritons in nanostructures with Bi-substituted iron garnets // Journal of Physics: Conference Series. 2019. V. 1389. P. 012103.
  16. Tomilin S., Karavaynikov A., Lyashko S., Tomilina O., Berzhansky V., Gusev A., Linert W., Yanovsky A. Asymmetric Magneto-Optical Rotation in Magnetoplasmonic Nanocomposite // J. Compos. Sci. 2023. V. 7. P. 287.
  17. Tomilin S.V., Berzhansky V.N., Shaposhnikov A.N., Prokopov A.R., Karavaynikov A.V., Milyukova E.T., Mikhaylova T.V., Tomilina O.A. Vertical Displacement of the Magnetooptical Hysteresis Loop in the Magnetoplasmonic Nanocomposite // Phys. Solid State. 2020. V. 62 (1). P. 144.
  18. Tomilin S.V., Berzhansky V.N., Shaposhnikov A.N., Lyashko S.D., Mikhailova T.V., Tomilina O.A. Spectral Properties of Magneto-plasmonic Nanocomposite. Vertical Shift of Magneto-Optical Hysteresis Loop // J. Phys.: Conference Series. 2019. V. 1410. P. 012122.
  19. Tomilina O.A., Berzhansky V.N., Tomilin S.V. The Influence of Dielectric Environment on Spectral Shift of Localized Plasmonic Resonance // J. Phys.: Conference Series. 2020. V. 1695. P. 012138.
  20. Baryshev A.V., Merzlikin A.M. Tunable Plasmonic Thin Magneto-Optical Wave Plate // J. Opt. Soc. Am. B. 2016. V. 33(7). P. 1399.
  21. Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М.: Наука, 1988. 192 с.
  22. Tomilin S.V., Karavaynikov A.V., Lyashko S.D., Milyukova E.T., Tomilina O.A., Yanovsky A.S., Belotelov V.I., Berzhansky V.N. Giant enhancement of the Faraday effect in a magnetoplasmonic nanocomposite // Optical Mater. Express. 2022. V. 12 (4). P. 1522.

补充文件

附件文件
动作
1. JATS XML